Contribution of Gulf of Aqaba Water (GAW) to Red Sea waters

Mohideen Wafar(King Fahd University of Petroleum and Minerals)

Abstract


Data obtained on hydrography and currents in meridional sections in Gulf of Aqaba and Red Sea in November 2013 and March 2015 were used to determine the extent of contribution of Gulf of Aqaba Water (GAW) to formation of Red Sea waters. The southward flow across the Strait of Tiran was ~0.02 Sv in both periods which is direct evidence of significant contribution of GAW to Red Sea waters in autumn-winter. A multiple tracer analysis using temperature, salinity, and dissolved oxygen showed that the GAW, on entry into Red Sea, bifurcates into two branches. The upper branch exiting the Strait in the depth range 150-220 m has densities between 28.3 and 28.5, continues to flow at the same depths, and feeds the Red Sea Overflow Water (RSOW). The lower branch that exits between 220 and 250 m above the sill cascades down its southern face, mixes with northward recirculating branch of Red Sea Deep Water (RSDW) and sinks to the bottom and forms part of southward-flowing RSDW. Contribution of GAW to northern Red Sea waters below 100 m depth was 36 ± 0.4% in November 2013 and 42.1 ± 5.4% in March 2015. GAW is traceable down to 17-19 °N in RSDW and RSOW. Volume contribution of GAW to RSOW was 9.6 * 1012 m3, about 50% higher than that for RSDW (6 * 1012 m3). Analyses of the data from R.V. Maurice Ewing cruise in 2001 gave similar results and lend support for these deductions. Indirect estimates suggest that contribution of GSW to deep water formation could exceed that of GAW.

Keywords


Hydrography; currents; Red Sea; Gulf of Aqaba; RSOW; GAW; GSW

Full Text:

PDF

References


Anati, D. A., 1974. Water transports in the Gulf of Aqaba. L'Océanographie Physique de la Mer

Rouge, 165-173. CNEXO Publ. No.2.

Arhan. M., Mercier, H., Bourles, B,, Gouriou, Y., 1998. Hydrographic sections across the Atlantic at 7’30N and 4”30S. Deep-Sea Res., 145, 829-872.

Biton, E., Gildor, H., 2011. The general circulation of the Gulf of Aqaba (Gulf of Eilat) revisited: The interplay between the exchange flow through the Straits of Tiran and surface fluxes. J. Geophys. Res., 116, C08020, doi:10.1029/2010JC006860.

Cember, R. P., 1988. On the sources, formation, and circulation of the Red Sea deep water, J. Geophys. Res., 93, 8175–8191.

Goyet, C., Coatanoan, C., G. Eischeid, G., Amaoka, T., Okuda, K., Healy, R., Tsunogai, S. 1999. Spatial variation of total CO2 and total alkalinity in the northern Indian Ocean: A novel approach for the quantification of anthropogenic CO2 in seawater, J. Marine Res., 57, 135-163.

Hall, J. K., 1975. Bathymetric chart of the Straits of Tiran, Isr. J. Earth. Sci., 24, 69–72.

Klinker, J., Reiss, Z., Kropach C. Levanon, I., Harpaz, H., Haliez, E., 1976. Observations on the circulation pattern in the Gulf of Elat (Aqaba), Red Sea, Israel J. Earth Sci., 25, 85-103.

Kuntz, R., 1985. Bestimmung der Tiefenwasserzirkulation des RotenMeeresanhandeinerBoxmodellauswertung von Tritium-, 3He- und Salinitatsdaten, Ph. D. thesis, RuprechtKarls Univ., 76 p.

Larqué, L., Maamaatuaiahutapu, K., Garcon, V. 1994.On the intermediate and deep water flows in the South Atlantic ocean, J. Geophys. Res., 102 (C6), 12,425-12,440.

Louarn, E., Morin, P., 2011. Antarctic Intermediate Water influence on Mediterranean Sea Water outflow. Deep-Sea Res., 58, 932-942.

Mackas, D.L., Denman, K.L., Bennett, A.F., 1987. Least squares multiple tracer analysis of water mass composition. J. Geophys. Res. C, 92, 2907-2918.

Maillard, C., 1974. Eaux intermédiaires et formation d’eau profonde en Mer Rouge. L’océanographie physique de la Mer Rouge. Cent. Natl. pour l’Exploitation des Océans, Paris, pp 105–133.

Maamaatuaiahutapu, K., Garcon, V. C., Provost, C., Boulahdid, M., Bianchi, A., 1994. Spring and winter water-mass composition in the Brazil-Malvinas Confluence, J. Marine Res., 52, 397-426.

Manasrah, R., Badran, M., Lass, H. U., Fennel, W., 2004. Circulation and winter deep water formation in the northern Red Sea. Oceanologia, 46, 5-23.

Menzel, D. W., Ryther, J. H., 1968. Organic carbon and the oxygen minimum in the South Atlantic Ocean. Deep-Sea Res., 15, 327-337.

Murray, S. P., Hecht, A., Babcock, A., 1984. On the mean flow in the Tiran Strait in winter, J. Mar. Res., 42, 265–287.

Paldor, N., Anati, D. A., 1979. Seasonal changes of temperature and salinity in the Gulf of

Elat (Aqaba). Deep-Sea Res., 26,661-672.

Papadopoulos, V. P., et al., 2015. Factors governing the deep ventilation of the Red Sea. Journal of Geophysical Research: Oceans 120.11, 7493-7505.

Plähn, O., Baschek, B., Badewien, B., Walter, T., Rhein, M., 2002. Importance of the Gulf of Aqaba for the formation of bottom water inthe Red Sea. J. Geophys. Res., 107, 22-1-22-18.

Ramesh, S., Ramadass, G. A., Ravichandran, M., Atmanand, M. A., 2013. Dissolved oxygen as a tracer for intermediate water mixing characteristics in the Indian Ocean. Curr. Sci., 105, 1724-1729.

Sofianos, S. S., Johns, W. E., 2002. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 1. Exchange between the Red Sea and the Indian Ocean. J Geophys Res 107 (C11):3196. doi:10.1029/2001JC001184.

Sofianos, S. S., Johns, W. E., 2007. Observations of the summer Red Sea circulation. J. Geophys. Res. 112, C06025, doi:10.1029/2006JC003886.

Sofianos, S., Johns, W. E., 2015. Water Mass Formation, Overturning Circulation, and the Exchange of the Red Sea with the Adjacent Basins, in: N.M.A Rasul and I.C.F Stewart (eds.), The Red Sea, Springer Earth System Sciences, DOI 10.1007/978-3-662-45201-1_20.

Sofianos S., Johns, W. E., 2017: The Summer Circulation in the Gulf of Suez and Its Influence in the Red Sea Thermohaline Circulation, J. Phys. Oceanogr., DOI: 10.1175/JPO-D-16-0282.1

Wafar, M., Qurban, M. A., Ashraf, M., Manikandan, K.P., Flandez, A. V., Balala, A. C., 2016. Patterns of distribution of inorganic nutrients in Red Sea and their implications to primary production. J. Mar. Sys. 156, 86-98.

Woelk, S., Quadfasel, D., 1996. Renewal of deep water in the Red Sea during 1982-1987. J. Geophys. Res., 101, 18,155-18,165.

Wyrtki, K., 1974. On the deep circulation of the Red Sea, in L’océanographie Physique de la MerRouge, 135–163.CNEXO Publ. No.2.

Yao, F., Hoteit, I., 2018. Rapid red sea deep water renewals caused by volcanic eruptions and the north Atlantic Oscillation. Science advances 4.6, eaar5637.

You, Y., 1997. Seasonal variations of thermocline circulation and ventilation in the Indian ocean, J. Geophys. Res., 102 (C5), 10,391-10,422.

You, Y., N. Suginohara, M. Fukasawa, H. Yoritaka, K. Mizuno, Y. Kashino, and D. Hartoyo, Transport of North Pacific Intermediate Water across Japanese WOCE sections, J. Geophys. Res., 108(C6), 3196, doi:10.1029/2002JC001662, 2003.

Zhai, P., Bower, A. S., Smethie, W. M. Jr., Pratt, L. J., 2015. Formation and spreading of Red Sea outflow water in the Red Sea. Journal of Geophysical Research: Oceans 120.9, 6542-6563.




DOI: http://dx.doi.org/10.36956/sms.v2i1.291

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Mohideen Wafar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
: +65 65881289 : info@nassg.org