Bibliometric Study Applied to the Overtopping Wave Energy Converter Device

Maycon da Silveira Paiva

Federal University of Rio Grande and Federal University of Rio Grande do Sul, Brazil.

Leonardo da Silva Silveira

Federal University of Rio Grande and Federal University of Rio Grande do Sul, Brazil.

Liércio André Isoldi

Federal University of Rio Grande and Federal University of Rio Grande do Sul, Brazil.

Bianca Neves Machado

Federal University of Rio Grande and Federal University of Rio Grande do Sul, Brazil.

DOI: https://doi.org/10.36956/sms.v2i1.306


Abstract

The present study aims to analyze the state of the art of scientific studies about the Overtopping device used to convert sea wave energy into electrical energy, by means the Bibliometric methodology. The development of this study took place through the selection of articles from conference proceedings, as well as national and international journals. The Bibliometric methodology consists of a statistical tool that allows quantifying the measurement of production indexes. Using selected keywords, it was conducted a survey of studies in the online databases of Science Direct, SciELO and Google Scholar. The works found then went through a filtering process, in order to limit the Bibliometric study only to studies about Overtopping devices as sea Wave Energy Converter (WEC). Finally, the investigation of these selected articles was carried out under the optics of production and authorship study, content study and study of bibliographic references. Where it was identified growth in publications related to the topic, methodologies used and, among other indicators, the authors most cited in the analyzed articles. The predominant keywords used were “Wave Energy Converter” and “Overtopping”. It was noted that Brazilian universities are leaders in the productivity, presenting more than 36% of the scientific production regarding Overtopping WECs.

Keywords: Bibliometry, Overtopping device, Wave energy converter, State of the art


References

[1] Faria, F. A. M., Jaramillo, P, Sawakuchi, H. O., Richey, J. E., Barros, N. Estimating Greenhouse Gas Emissions from Future Amazonian Hydroelectric Reservoirs. Environmental Research Letters, 2015, 10.

[2] Soerensen, H. C. e Weinstein, A. Ocean Energy: Position paper for IPCC. In: proceedings of IPCC Scoping Meeting on Renewable Energy Sources, Alemanha, 2008.

[3] Pecher, A., Kofoed, J. Handbook of Ocean Wave Energy. Springer Nature, Switzerland, 2017.

[4] Mendes, R. P. G. Energia das ondas: desenvolvimento de uma tecnologia de geração: gerador tubular. Master Thesis, Universidade da Beira Interior, Portugal, 2011.

[5] Santos, A., Weber, L., Moreira, T. A Matriz Energética Brasileira e o Aproveitamento das Fontes Renováveis. Análise Conjuntural, 2006, 28.

[6] Kallesøe, B. S. Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and Floating Wind Turbines. DTU, Risø-R-1767, Denmark, 2011.

[7] Cruz, J. Ocean Wave Energy-Current Status and Future Prepectives. Springer-Verlag Berlin Heidelberg, Germany, 2008.

[8] LIMA, J. A. O. Gerador de Baixa Rotação para Aproveitamento de Energia das Ondas, Master Thesis, Universidade Nova de Lisboa, Portugal, 2010.

[9] WavEC. Potencial e Estratégia de Desenvolvimento da Energia das Ondas em Portugal. Wave Energy Centre, 2004.

[10] Cruz, J., Sarmento, A. Energia das Ondas-Introdução aos Aspectos Tecnológicos, Econômicos e Ambientais. Instituto do Ambiente, Alfragide, 2004.

[11] Rhinefrank, K. Agamloh, E. B. Von Jouanne, A. Novel ocean energy permanent magnet linear generator buoy. Renewable Energy, 2006, 31.

[12] ETSU-Energy Technology Support Unit; Technology status report: Wave energy, a report by ETSU as part of the DTI’s new and Renewable Energy Programme, Technical report, Energy Technology Support Unit, 2001.

[13] Machado, B. N., Kisner, E. V., Paiva, M. S., Gomes, M. N., Rocha, L. A. O., Marques, W. C., Santos, E. D., Isoldi, L. A. Numerical generation of regular waves using discrete analytical data as boundary condition of prescribed velocity. In: XXXVIII Congresso Ibero-Latinoamericano de Métodos Computacionais em Engenharia, Brazil, 2017.

[14] Kofoed, J. P., Frigaard, P., Friis-Madsen, E., Sørensen, H. C. Prototype Testing of the Wave Energy Converter Wave Dragon. Renewable Energy, 2006, 31.

[15] Margheritini, L., Vicinanza, D., Frigaard, P. SSG Wave Energy Converter: Design, Reliability dnd Hydraulic Performance of an Innovative Overtopping Device. Renewable Energy, 2009, 34.

[16] Machado, B. Modelagem Computacional e Otimização Geométrica de um dispositivo de Galgamento para a conversão da energia das ondas do mar em energia elétrica. Master Thesis, Federal University of Rio Grande, Brazil, 2012.

[17] Longaray, A. A., Popiek, J. R., T. L., Munhoz, P. R. S., Geri, F. S., Castelli, T. M. Caracterização da Produção Científica Brasileira sobre a Aplicação de Métodos Multicritério de Apoio à Decisão: uma Análise das Publicações entre 2004-2013. In: XXXV Encontro Nacional de Engenharia de Produção, Brazil, 2015.

[18] Guedes, V. F. S.; Borschiver, S.; Bibliometria: uma Ferramenta Estatística para a Gestão da Informação e do Conhecimento, em Sistemas de Informação, de Comunicação e de Avaliação Cientifica e Tecnológica. In: Encontro Nacional de Ciências da Informação (CINFORM), 2005.

[19] Silva, A. P. F., Nascimento, A. N., Pinho, M. A. B., Falk, J. A. Estudo Bibliométrico sobre Custo em Organizações da Construção Civil: Contribuições do Congresso Brasileiro de Custo de 1996, a 2010. In: Congresso Brasileiro de Custos, 2012.

[20] Santos, G. C. Análise Bibliométrica dos Artigos Publicados como Estudos Bibliométricos na História do Congresso Brasileiro de Custos. Pensar Contábil, 2015, 15.

[21] Barbosa, D. V. E., Santos, A. L. G., Dos Santos, E. D., Souza, J. A. Overtopping Device Numerical Study: Openfoam Solution Verification and Evaluation of Curved Ramps Performances. International Journal of Heat and Mass Transfer, 2019, 131.

[22] Beels, C., Troch, P., De Backer, G., Vantorre, M., De Rouck, J. Numerical Implementation and Sensitivity Analysis of a Wave Energy Converter in a Time-Dependent Mild-Slope Equation Model. Coastal Engineering, 2010, 57.

[23] Buccino, M., Stagonas, D., Vicinanza, D. Development of a Composite Sea Wall Wave Energy Converter System. Renewable Energy, 2015, 81.

[24] Carballo, R., Iglesias, G. Wave Farm Impact Based on Realistic Wave-WEC Interaction. Energy, 2013, 51.

[25] Contestanile, P., Ferrante, V., Di Lauro, E., Vicinanza, D. Prototype Overtopping Breakwater for Wave Energy Conversion at Port of Naples. Proceedings of the Twenty-sixth International Ocean and Polar Engineering Conference, 2016.

[26] Contestabile, P., Iuppa, C., Di Lauro, E., Cavallaro, L., Andersen, T. L., Vicinanza, D. Wave Loadings Acting on Innovative Rubble Mound Breakwater for Overtopping Wave Energy Conversion. Coastal Engineering, 2017, 122.

[27] Di Lauro, E., Lara, J. L., Maza, M., Losada, I. J., Contestabile, P., Vicinanza, D. Stability Analysis of a Non-Conventional Breakwater for Wave Energy Conversion. Coastal Engineering, 2019, 145.

[28] Dos Santos, E. D., Machado, B. N., Zanella, M. M., Gomes, M. das N., Souza, J. A., Isoldi, L. A., Rocha, L. A. O. Numerical Study of the Effect of the Relative Depth on the Overtopping Wave Energy Converters According to Constructal Design. Defect and Diffusion Forum, 2014, 348.

[29] Fernandez, H., Iglesias, G., Carballo, R., Castro, A., Fraguela, J. A., Taveira-Pinto, F., Sanchez, M. The new Wave Energy Converter WaveCat: Concept and Laboratory Tests. Marine Structures, 2012, 29.

[30] Frigaard, P. B., Kofoed, J. P., Rasmussen, M. R. Overtopping Measurements on the Wave Dragon Nissum Bredning Prototype. The Proceedings of the Fourteenth International Offshore and Polar Engineering Conference, 2004.

[31] Gomes, M. N., Lara, M. F. E., Iahnke, S. L. P., Machado, B. N., Goulart, M. M., Seibt, F. M., Dos Santos, E. D., Isoldi, L. A., Rocha, L. A. O. Numerical Approach of the Main Physical Operational Principle of Several Wave Energy Converters: Oscillating Water Column, Overtopping and Submerged Plate. Defect and Diffusion Forum, 2015, 362.

[32] Goulart, M. M., Martins, J. C., Gomes, M. N., Acunha Jr, I. C., Souza, J. A., Rocha, L. A. O., Isoldi, L. A., Dos Santos, E. D. Constructal Design de um Dispositivo de Galgamento Onshore em Escala real para uma Profundidade Fixa. Scientia Plena, 2015, 11.

[33] Z. Han, Z. Liu, H. Shi. Numerical Study on Overtopping Performance of a Multi-Level Breakwater for Wave Energy Conversion. Ocean Engineering, 2018, 150.

[34] Iahnke, S. L. P., Gomes, M. N., Isoldi, L. A., Rocha, L. A. O. Energia das Ondas do Mar: Modelagem Computacional de um Dispositivo de Galgamento. Vetor, 2009, 19.

[35] Jungrungruengtaworn, S., Hyun, B.-S. Influence of Slot Width on the Performance of Multi-Stage Overtopping Wave Energy Converters. International Journal of Naval Architecture and Ocean Engineering, 2017, 9.

[36] Knott, G. F., Flower, J. O. Simulation Studies of the Basic Non-Linear Effects of Wave-Energy Conversion by an Overtopping Water-Column. Energy Conversion, 1979, 19.

[37] Kofoed, J. P., Frigaard, P., Friis-Madsen, E., Sørensen, H. C. Prototype Testing of the Wave Energy Converter Wave Dragon. Renewable Energy, 2006, 31.

[38] Kofoed, J. P. Vertical Distribution of Wave Overtopping for Design of Multi Level Overtopping Based Wave Energy Converters. Proceedings of the 30th International Conference on Coastal Engineering, 2006.

[39] Z. Liu, Hyun, B. S., J. Jin. Numerical Prediction for Overtopping Performance of OWEC. IEEE, 2008.

[40] Z. Liu, H. Shi, Y. Cui, Kim, K. Experimental Study on Overtopping Performance of a Circular Ramp Wave Energy Converter. Renewable Energy, 2017, 104.

[41] Z. Liu, Z. Han, H. Shi, W. Yang. Experimental Study on Multi-Level Overtopping Wave Energy Converter Under Regular Wave Conditions. International Journal of Naval Architecture and Ocean Engineering, 2018, 10.

[42] Machado, B. N., Dos Santos, E. D., Isoldi, L. A., Gomes, M. N., Rocha, L. A. O. Análise Numérica da Geometria da Rampa de um Dispositivo de Galgamento Onshore em Escala Real Aplicando o Design Construtal. Revista Brasileira de Energias Renováveis, 2017, 6.

[43] Margheritini, L., Vicinanza, D., Frigaard, P. SSG Wave Energy Converter: Design, Reliability and Hydraulic Performance of an Innovative Overtopping Device. Renewable Energy, 2009, 34.

[44] Martins, J. C., Goulart, M. M., Gomes, M. N., Souza, J. A., Rocha, L. A. O., Isoldi, L. A., Dos Santos, E. D. Análise Numérica de um Dispositivo de Galgamento Onshore Comparando a Influência de uma Onda Monocromática e de um Espectro de Ondas. Revista Brasileira de Energias Renováveis, 2017, 6.

[45] Martins, J. C., Barbosa, D. V. E., Goulart, M. M., Viegas, A. R., Furich, A. S., Rocha, L. A. O., Souza, J. A., Isoldi, L. A., Dos Santos, E. D. Estudo dos Procedimentos Numéricos para Simulação de um Dispositivo de Galgamento. Revista Brasileira de Energias Renováveis, 2017, 6.

[46] Martins, J. C., Goulart, M. M., Gomes, M. N., Souza, J. A., Rocha, L. A. O., Isoldi, L. A., Dos Santos, E. D. Geometric Evaluation of the Main Operational Principle of an Overtopping Wave Energy Converter by Means of Constructal Design. Renewable Energy, 2018, 118.

[47] Monk, K., Zou, Q., Conley, D. An Approximate Solution for the Wave Energy Shadow in the Lee of an Array of Overtopping Type Wave Energy Converters. Coastal Engineering, 2013, 73.

[48] Musa, M. A., Maliki, A. Y., Ahmad, M. F., Sani, W. N., Yaakob, O., Samo, K. B. Numerical Simulation of Wave Flow Over the Overtopping Breakwater for Energy Conversion (OBREC) Device. Procedia Engineering, 2017, 194.

[49] Mustapa, M. A., Yaakob, O. B., Ahmed, Y. M., Rheem, C., Koh, K. K., Adnan, F. A. Wave Energy Device and Breakwater Integration: A Review. Renewable and Sustainable Energy Reviews, 2017, 77.

[50] Oliveira, P., Taveira-Pinto, F., Morais, T., Rosa- -Santos, P. Aproveitamento da Energia do Mar Através do Espraiamento em Estruturas Costeiras. In: 9as Jornadas de Hidráulica, Recursos Hídricos e Ambiente, 2014.

[51] Thaha. A., Maricar, F., Aboe, A. F., Dwipuspita, A. I. The Breakwater, From Wave Breaker to Wave Catcher. Procedia Engineering, 2015, 116.

[52] Tedd, J., Kofoed, J. P. Measurements of Overtopping Flow Time Series on the Wave Dragon, Wave Energy Converter. Renewable Energy, 2009, 34.

[53] Vasconcellos, L. S., Rubin, L. M., Goulart, M. M., Dos Santos, E. D., Isoldi, A. L. Modelagem Computacional do Princípio de Funcionamento de um Conversor de Energia das Ondas do Mar em Energia Elétrica do Tipo Seawave Slot-Cone Generator (SSG). In: 12ª Mostra de Produção Universitária, 2013.

[54] Vicinanza, D., Margheritini, L., Kofoed, J.P., Buccino, M. The SSG Wave Energy Converter: Performance, Status and Recent Developments. Energies, 2012, 5.

[55] Vicinanza, D., Contestabile, P., Norgaard, J. Q. H., Anderson, T. L. Innovative Rubble Mound Breakwaters for Overtopping Wave Energy Conversion. Coastal Engineering, 2014, 88.

[56] Kofoed, J. P. Wave Overtopping of Marine Structures: Utilization of Wave Energy. Doctoral Thesis, Aalborg University, Denmark, 2002.

[57] Falcão, A. F. O., Wave Energy Utilization: a Review of the Technologies, Renewable and Sustainable Energy Reviews, 2010, 14.

[58] Beels, C., Troch, P., De Visch, K., Kofoed, J. P., De Backer, G. Application of Time-Dependent Mild Slope Equations for the Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy, Renewable Energy, 2010, 35