Nanomaterials in Soil Environment: A Review

SATYA SUNDAR BHATTACHARYA(Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University)
Subhasish Das(Department of Environmental Science, Pachhunga University College, Mizoram University)

Article ID: 11

Abstract


Nanomaterials (NMs) have become an integral part of our daily life and their extensive uproduction will only increase with the coming time. These NMs exhibit significant contrast in regard to dimension, reaction, and structure. The most important aspect of the NMs is that these can be easily manipulated and engineered to custom-suit different functions/industries. Owing to
their dynamic nature, these NMs behave differently when introduced in any medium. In soil, the behavior of NMs is significantly controlled by the interactions of nanomaterials with soil phases. Although, NMs are deemed beneficial for human-use yet these also carry lethal effects. Moreover, there is dearth of adequate research with respect to the interactions among
nanomaterials and soil physicochemical properties; their accumulation-dissolution dynamics in soil-plant systems; and their long term influence on soil health. Several NMs induce physiological stress when introduced inside the body. Thus, various researchers have devised green pathways for producing NMs, although their wide applicability is still questionable. Although the domain of nanotechnology is greatly explored yet there remain several grey areas
which need to be addressed for sustainable utilization of these unique materials in the benefit of humankind.

Keywords


Nanomaterials; toxicity; soil; stress; biomagnification

Full Text:

PDF

References


Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., Hull, M., 2006. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56. https://doi.org/10.1093/occmed/kql051

Ananth, A., Dharaneedharan, S., Heo, M.-S., Mok, Y.S., 2015. Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance. Chemical Engineering Journal 262, 179–188. https://doi.org/10.1016/j.cej.2014.09.083

Aubert, T., Burel, A., Esnault, M.-A., Cordier, S., Grasset, F., Cabello-Hurtado, F., 2012. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. Journal of Hazardous Materials 219–220, 111–118. https://doi.org/10.1016/j.jhazmat.2012.03.058

Auffan, M., Rose, J., Wiesner, M.R., Bottero, J.-Y., 2009. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environmental pollution (Barking, Essex : 1987) 157, 1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002

Baalousha, M., Lead, J.R., 2013. Characterization of natural and manufactured nanoparticles by atomic force microscopy: Effect of analysis mode, environment and sample preparation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 419, 238–247. https://doi.org/10.1016/j.colsurfa.2012.12.004

Barnes, R.J., Riba, O., Gardner, M.N., Scott, T.B., Jackman, S.A., Thompson, I.P., 2010. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 79, 448–454. https://doi.org/10.1016/j.chemosphere.2010.01.044

Barua, S., Konwarh, R., Bhattacharya, S.S., Das, P., Devi, K.S.P., Maiti, T.K., Mandal, M., Karak, N., 2013. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids and Surfaces B: Biointerfaces 105, 37–42. https://doi.org/10.1016/j.colsurfb.2012.12.015

Benn, T.M., Westerhoff, P., 2008. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environmental Science & Technology 42, 7025–7026. https://doi.org/10.1021/es801501j

Beyene, H.D., Werkneh, A.A., Bezabh, H.K., Ambaye, T.G., 2017. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001

Bizmark, N., Ioannidis, M.A., 2015. Effects of Ionic Strength on the Colloidal Stability and Interfacial Assembly of Hydrophobic Ethyl Cellulose Nanoparticles. Langmuir : the ACS journal of surfaces and colloids 31, 9282–9289. https://doi.org/10.1021/acs.langmuir.5b01857

Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., Wood, S., 2006. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicological sciences : an official journal of the Society of Toxicology 90, 23–32. https://doi.org/10.1093/toxsci/kfj084

Bratlie, K.M., Lee, H., Komvopoulos, K., Yang, P., Somorjai, G.A., 2007. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano letters 7, 3097–3101. https://doi.org/10.1021/nl0716000

Buettner, K.M., Rinciog, C.I., Mylon, S.E., 2010. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 366, 74–79. https://doi.org/10.1016/j.colsurfa.2010.05.024

Bumajdad, A., Ali, S., Mathew, A., 2011. Characterization of iron hydroxide/oxide nanoparticles prepared in microemulsions stabilized with cationic/non-ionic surfactant mixtures. Journal of colloid and interface science 355, 282–292. https://doi.org/10.1016/j.jcis.2010.12.022

Campos, E.A., Pinto, D.V.B.S., Oliveira, J.I.S. de, Mattos, E. da C., Dutra, R. de C.L., 2015. Synthesis, Characterization and Applications of Iron Oxide Nanoparticles - a Short Review . Journal of Aerospace Technology and Management .

Canas, J.E., Qi, B., Li, S., Maul, J.D., Cox, S.B., Das, S., Green, M.J., 2011. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO(2)) to earthworms (Eisenia fetida). Journal of environmental monitoring : JEM 13, 3351–3357. https://doi.org/10.1039/c1em10497g

Corr, S.A., 2013. Metal oxide nanoparticles, in: Nanoscience: Volume 1: Nanostructures through Chemistry. The Royal Society of Chemistry, pp. 180–207. https://doi.org/10.1039/9781849734844-00180

Fernandes, M.T.C., Garcia, R.B.R., Leite, C.A.P., Kawachi, E.Y., 2013. The competing effect of ammonia in the synthesis of iron oxide/silica nanoparticles in microemulsion/sol–gel system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 422, 136–142. https://doi.org/10.1016/j.colsurfa.2013.01.025

French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L., Baveye, P.C., 2009. Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles. Environmental Science & Technology 43, 1354–1359. https://doi.org/10.1021/es802628n

Gallego-Urrea, J.A., Tuoriniemi, J., Pallander, T., Hassellöv, M., 2010. Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis. Environmental Chemistry 7, 67–81.

Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S., 2016. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

Gentile, A., Ruffino, F., Grimaldi, G.M., 2016. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications. Nanomaterials . https://doi.org/10.3390/nano6060110

Gomes, S.I.L., Novais, S.C., Scott-Fordsmand, J.J., De Coen, W., Soares, A.M.V.M., Amorim, M.J.B., 2012a. Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155, 219–227. https://doi.org/10.1016/j.cbpc.2011.08.008

Gomes, S.I.L., Novais, S.C., Scott-Fordsmand, J.J., De Coen, W., Soares, A.M.V.M., Amorim, M.J.B., 2012b. Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155, 219–227. https://doi.org/10.1016/j.cbpc.2011.08.008

Gonzalez-Moragas, L., Yu, S.-M., Benseny-Cases, N., Stürzenbaum, S., Roig, A., Laromaine, A., 2017. Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans. Nanotoxicology 11, 647–657. https://doi.org/10.1080/17435390.2017.1342011

Goswami, L., Kim, K.-H., Deep, A., Das, P., Bhattacharya, S.S., Kumar, S., Adelodun, A.A., 2017. Engineered nano particles: Nature, behavior, and effect on the environment. Journal of environmental management 196, 297–315. https://doi.org/10.1016/j.jenvman.2017.01.011

Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring 13, 1145–1155. https://doi.org/10.1039/C0EM00547A

Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environmental Science & Technology 43, 9216–9222. https://doi.org/10.1021/es9015553

Gourgou, E., Zhang, Y., Mirzakhalili, E., Epureanu, B., 2018. Caenorhabditis elegans locomotion dynamics is affected by internally localized magnetic fields. bioRxiv.

Guardia, P., Pérez, N., Labarta, A., Batlle, X., 2010. Controlled Synthesis of Iron Oxide Nanoparticles over a Wide Size Range. Langmuir 26, 5843–5847. https://doi.org/10.1021/la903767e

Gupta, A.K., Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

Handy, R.D., von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R., Crane, M., 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology (London, England) 17, 287–314. https://doi.org/10.1007/s10646-008-0199-8

Heiligtag, F.J., Niederberger, M., 2013. The fascinating world of nanoparticle research. Materials Today 16, 262–271. https://doi.org/10.1016/j.mattod.2013.07.004

Hooper, H.L., Jurkschat, K., Morgan, A.J., Bailey, J., Lawlor, A.J., Spurgeon, D.J., Svendsen, C., 2011. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environment International 37, 1111–1117. https://doi.org/10.1016/j.envint.2011.02.019

Hu, C.W., Li, M., Cui, Y.B., Li, D.S., Chen, J., Yang, L.Y., 2010. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry 42, 586–591. https://doi.org/10.1016/j.soilbio.2009.12.007

Jemec, A., Drobne, D., Remskar, M., Sepcic, K., Tisler, T., 2008. Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environmental toxicology and chemistry 27, 1904–1914.

Jiang, J., Oberdörster, G., Biswas, P., 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research 11, 77–89. https://doi.org/10.1007/s11051-008-9446-4

Johnson, A.C., Bowes, M.J., Crossley, A., Jarvie, H.P., Jurkschat, K., Jürgens, M.D., Lawlor, A.J., Park, B., Rowland, P., Spurgeon, D., Svendsen, C., Thompson, I.P., Barnes, R.J., Williams, R.J., Xu, N., 2011a. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of The Total Environment 409, 2503–2510. https://doi.org/10.1016/j.scitotenv.2011.03.040

Johnson, A.C., Bowes, M.J., Crossley, A., Jarvie, H.P., Jurkschat, K., Jürgens, M.D., Lawlor, A.J., Park, B., Rowland, P., Spurgeon, D., Svendsen, C., Thompson, I.P., Barnes, R.J., Williams, R.J., Xu, N., 2011b. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of The Total Environment 409, 2503–2510. https://doi.org/10.1016/j.scitotenv.2011.03.040

Joshi, S.S., Patil, P.R., Krishnamurthy, V.N., 2008. Thermal Decomposition of Ammonium Perchlorate in thePresence of Nanosized Ferric Oxide. Defence Science Journal; Vol 58, No 6.

Judy, J.D., Unrine, J.M., Bertsch, P.M., 2011. Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain. Environmental Science & Technology 45, 776–781. https://doi.org/10.1021/es103031a

Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., Boller, M., 2008. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 156, 233–239. https://doi.org/10.1016/j.envpol.2008.08.004

Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z., 2010. Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environmental Science & Technology 44, 1962–1967. https://doi.org/10.1021/es902987d

Khan, Ibrahim, Saeed, K., Khan, Idrees, 2017. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011

Kim, B., Park, C.-S., Murayama, M., Hochella, M.F., 2010. Discovery and Characterization of Silver Sulfide Nanoparticles in Final Sewage Sludge Products. Environmental Science & Technology 44, 7509–7514. https://doi.org/10.1021/es101565j

Kim, S.W., Nam, S.-H., An, Y.-J., 2012. Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicology and environmental safety 77, 64–70. https://doi.org/10.1016/j.ecoenv.2011.10.023

Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G., 2014. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials 264, 98–106. https://doi.org/10.1016/J.JHAZMAT.2013.10.053

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N., 2010. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews 110, 2574. https://doi.org/10.1021/cr900197g

Machala, L., Tuček, J., Zbořil, R., 2011. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials 23, 3255–3272. https://doi.org/10.1021/cm200397g

Manzo, S., Rocco, A., Carotenuto, R., Picione, F.D.L., Miglietta, M.L., Rametta, G., Di Francia, G., 2011. Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environmental science and pollution research international 18, 756–763. https://doi.org/10.1007/s11356-010-0421-0

Marin, S., Vlasceanu, G.M., Tiplea, R.E., Bucur, I.R., Lemnaru, M., Marin, M.M., Grumezescu, A.M., 2015. Applications and toxicity of silver nanoparticles: a recent review. Current topics in medicinal chemistry 15, 1596–1604.

Martin-Palma, R.J., Lakhtakia, A., 2010. Properties of Nanostructures, in: Nanotechnology: A Crash Course. SPIE Digital Library, pp. 31–36. https://doi.org/10.1117/3.853406.ch3

Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., Haynes, C.L., 2013. Toxicity of engineered nanoparticles in the environment. Analytical chemistry 85, 3036–49. https://doi.org/10.1021/ac303636s

Moerz, S.T., Kraegeloh, A., Chanana, M., Kraus, T., 2015. Formation Mechanism for Stable Hybrid Clusters of Proteins and Nanoparticles. ACS Nano 9, 6696–6705. https://doi.org/10.1021/acsnano.5b01043

Mueller, N.C., Nowack, B., 2008. Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology 42, 4447–4453. https://doi.org/10.1021/es7029637

Oskam, G., 2006. Metal oxide nanoparticles: synthesis, characterization and application. Journal of Sol-Gel Science and Technology 37, 161–164. https://doi.org/10.1007/s10971-005-6621-2

Pandian, A.M.K., Karthikeyan, C., Rajasimman, M., Dinesh, M.G., 2015. Synthesis of silver nanoparticle and its application. Ecotoxicology and Environmental Safety 121, 211–217. https://doi.org/10.1016/j.ecoenv.2015.03.039

Patil, R.M., Thorat, N.D., Shete, P.B., Bedge, P.A., Gavde, S., Joshi, M.G., Tofail, S.A.M., Bohara, R.A., 2018. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports 13, 63–72. https://doi.org/10.1016/j.bbrep.2017.12.002

Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., Lowry, G. V, 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental science & technology 41, 284–290.

Phiwdang, K., Suphankij, S., Mekprasart, W., Pecharapa, W., 2013. Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors. Energy Procedia 34, 740–745. https://doi.org/10.1016/j.egypro.2013.06.808

Pieters, G., Pezzato, C., Prins, L.J., 2012. Reversible Control over the Valency of a Nanoparticle-Based Supramolecular System. Journal of the American Chemical Society 134, 15289–15292. https://doi.org/10.1021/ja307621d

Pipan-Tkalec, Z., Drobne, D., Jemec, A., Romih, T., Zidar, P., Bele, M., 2010. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology 269, 198–203. https://doi.org/10.1016/j.tox.2009.08.004

Rodriguez, J.A., Liu, G., Jirsak, T., Hrbek, J., Chang, Z., Dvorak, J., Maiti, A., 2002. Activation of Gold on Titania: Adsorption and Reaction of SO2 on Au/TiO2(110). Journal of the American Chemical Society 124, 5242–5250. https://doi.org/10.1021/ja020115y

Rosicka, D., Sembera, J., 2011. Assessment of Influence of Magnetic Forces on Aggregation of Zero-valent Iron Nanoparticles. Nanoscale research letters 6, 10. https://doi.org/10.1007/s11671-010-9753-4

Schmid, K., Riediker, M., 2008. Use of Nanoparticles in Swiss Industry: A Targeted Survey. Environmental Science & Technology 42, 2253–2260. https://doi.org/10.1021/es071818o

Schoiswohl, J., Kresse, G., Surnev, S., Sock, M., Ramsey, M.G., Netzer, F.P., 2004. Planar Vanadium Oxide Clusters: Two-Dimensional Evaporation and Diffusion on Rh(111). Physical Review Letters 92, 206103.

Shen, C., Jin, Y., Li, B., Ruckenstein, E., Shang, J., Huang, Y., 2018. Anomalous Attachment Behavior of Nanoparticles inside Narrow Channels. Vadose Zone Journal 17. https://doi.org/10.2136/vzj2018.04.0075

Shoults-Wilson, William A, Reinsch, B.C., Tsyusko, O. V, Bertsch, P.M., Lowry, G. V, Unrine, J.M., 2011. Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5, 432–444. https://doi.org/10.3109/17435390.2010.537382

Shoults-Wilson, W A, Zhurbich, O.I., McNear, D.H., Tsyusko, O.V., Bertsch, P.M., Unrine, J.M., 2011. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology (London, England) 20, 385–396. https://doi.org/10.1007/s10646-010-0590-0

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D., 2015. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters 7. https://doi.org/10.1007/s40820-015-0040-x

Song, Z., Cai, T., Chang, Z., Liu, G., Rodriguez, J.A., Hrbek, J., 2003. Molecular Level Study of the Formation and the Spread of MoO3 on Au (111) by Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 125, 8059–8066. https://doi.org/10.1021/ja034862m

Stebounova, L.V., Guio, E., Grassian, V.H., 2011. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. Journal of Nanoparticle Research 13, 233–244. https://doi.org/10.1007/s11051-010-0022-3

Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., Handy, R., Hankin, S., Hassellöv, M., Joner, E., Fernandes, T.F., 2010. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Science of The Total Environment 408, 1745–1754. https://doi.org/10.1016/j.scitotenv.2009.10.035

Sun, S., Zeng, H., 2002. Size-Controlled Synthesis of Magnetite Nanoparticles. Journal of the American Chemical Society 124, 8204–8205. https://doi.org/10.1021/ja026501x

Tiwari, J.N., Tiwari, R.N., Kim, K.S., 2012. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science 57, 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003

Tourinho, P.S., van Gestel, C.A.M., Lofts, S., Svendsen, C., Soares, A.M.V.M., Loureiro, S., 2012a. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environmental toxicology and chemistry 31, 1679–1692. https://doi.org/10.1002/etc.1880

Tourinho, P.S., van Gestel, C.A.M., Lofts, S., Svendsen, C., Soares, A.M.V.M., Loureiro, S., 2012b. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environmental toxicology and chemistry 31, 1679–1692. https://doi.org/10.1002/etc.1880

Unrine, J.M., Hunyadi, S.E., Tsyusko, O.V., Rao, W., Shoults-Wilson, W.A., Bertsch, P.M., 2010. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms ( Eisenia fetida ). Environmental Science & Technology 44, 8308–8313. https://doi.org/10.1021/es101885w

Wang, H., Wick, R.L., Xing, B., 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157, 1171–1177. https://doi.org/10.1016/j.envpol.2008.11.004

Wang, Y., Deng, L., Caballero-Guzman, A., Nowack, B., 2016. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling. Nanotoxicology 10, 1545–1554. https://doi.org/10.1080/17435390.2016.1242798

Wiley, B.J., Im, S.H., Li, Z.-Y., McLellan, J., Siekkinen, A., Xia, Y., 2006. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B 110, 15666–15675. https://doi.org/10.1021/jp0608628

Wu, W., He, Q., Jiang, C., 2008. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters 3, 397–415. https://doi.org/10.1007/s11671-008-9174-9

Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E., 2009. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie (International ed. in English) 48, 60–103. https://doi.org/10.1002/anie.200802248

Xu, Z., Hwang, J.-Y., Li, B., Huang, X., Wang, H., 2008. The characterization of various ZnO nanostructures using field-emission SEM. JOM 60, 29–32. https://doi.org/10.1007/s11837-008-0044-9

Yahya, N., Daud, H., Tajuddin, N.A., Daud, H.M., Shafie, A., Puspitasari, P., 2010. Application of ZnO Nanoparticles EM Wave Detector Prepared by Sol-Gel and Self-Combustion Techniques. Journal of Nano Research 11, 25–34. https://doi.org/10.4028/www.scientific.net/JNanoR.11.25

Zhang, Y., Leu, Y.-R., Aitken, R.J., Riediker, M., 2015. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment. International Journal of Environmental Research and Public Health 12, 8717–8743. https://doi.org/10.3390/ijerph120808717




DOI: http://dx.doi.org/10.36956/njas.v1i2.11

Refbacks

  • There are currently no refbacks.


Copyright © 2020 SATYA SUNDAR BHATTACHARYA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.