Efficacy of Acid-modified Sawdust in Decolourization of Tanning Waste Water

Alhassan, M.¹* Suleiman, M.¹ Isah, A.A² Abdulrashid, A. G.¹ Nasiru, Y.¹ Bello, A.¹
1. Department of Chemistry, Sokoto State University, Nigeria
2. Department of Chemistry, Usman Danfodiyo University, Nigeria

ARTICLE INFO

Article history
Received: 13 September 2021
Accepted: 22 September 2021
Published Online: 30 September 2021

Keywords:
Wastewater
Acid-modification
Saw dust
Physicochemical properties.

1. Introduction

Diverse environmental and anthropogenic pollution has been posed by chemical industries producing waste effluents for over a decade. These effluents are a major threat to the environment as they appreciably affect green industrial activities and are unquestionably one of the most important problems of industrialization [1].

Tanning, the chemical process that converts animal hides and skin into leather and related products, is usually achieved by means of tanning agents and the process generates highly turbid, colored and foul-smelling wastewater. The major components of the effluents include large quantities of solid waste, sulfides, volatile organic compounds, suspended solids like animal hair etc [2].

The uncontrolled release of tannery effluents (containing high COD, BOD levels, trivalent chromium, sulfides, sodium chloride, calcium, magnesium, organics and other toxic ingredients) to the natural water bodies affects the plant and animals, the ecosystem and increases the health risk of human beings [3-4].

The manufacture of leather has evolved into a significant source of livelihood in many industrialized and developing countries. [5-7], reported an estimated production capacity of 1.8 billion metric tons of leather yearly, with a larger part of the product processed in Africa and Asia, factored by the high labour intensity involved in the manufacture and treatment of leather.

The most common methods for the removal of contaminants from industrial effluents include biodegradation, precipitation, chemical oxidation, solvent extraction, evaporation, electrochemical approaches, cementation, membrane filtration, phytoremediation, ion-exchange, and carbon adsorption [6,7].

*Corresponding Author:
Alhassan, M.,
Department of Chemistry, Sokoto State University, Nigeria;
Email: mansuralhassan@gmail.com

DOI: http://dx.doi.org/10.36956/rwae.v2i4.444
According to reports of [8,9], colour removal in wastewater is one of the most difficult challenges to be addressed by textile finishing, tanning, dye manufacturing, pulp and paper industries, among others.

Over the last few years, adsorption has gained importance as a separation, purification and/or detoxification process on an industrial scale. It has been used to purify [2], decolorize [8-9], detoxify [12], deodorize [2], separate [4], concentrate [5] and to recover the harmful products from liquid solutions and gas mixtures [9]. Accordingly, Sungur and Özkan [10], considered adsorption processes the best choice compared to other methods due to their convenience, easy operation and simplicity of design, high efficiency, and also for their wider applicability in water pollution control.

2. Experiments

2.1 Sample collection and treatment

The sawdust was collected from a local sawmill in Tashar Katako, Sokoto South Local Government Area of Sokoto State. It was carefully screened, washed several times with distilled water to remove dirt (sand dust), colour and other surface adhering particles, filtered, dried in a thermostatic oven at 105 °C [28].

The dried sample was ground to smaller particles size with mechanical blender and used for the preparation of the adsorbent. The tannery wastewater that was used was collected from a local tannery located at Tudun wada and Bauchi road areas of Sokoto State. The method of collection was by direct dipping of a 2 L plastic bottle into different depths of the effluent. The bottle was removed, covered and brought to the laboratory for analysis. Adopting the method reported by [27] the temperature, pH, total dissolve solids and conductivity were determined as soon as the sample was brought to the laboratory.

2.2 Adsorbent preparation

The method reported elsewhere [2] was adopted for preparing the adsorbent. Powdered sawdust (150 g) was accurately weighed using an analytical balance and transferred into an empty 1000 cm3 beaker where 500 cm3 of 5 % sulphuric acid (H$_2$SO$_4$) solution was added. The mixture was placed on a magnetic stirrer/heating mantle for continuous stirring and heating at 32 °C for 24 h until a thick slurry was obtained. The slurry (acidified sawdust) was washed (continuously) with distilled water until a weakly acidic pH more than 5. The acid-treated saw dust was dried in a thermostatic oven at 50 °C overnight and then stored in glass container prior to further investigations.

2.3 Decolourization

Tannery wastewater was used to evaluate the effectiveness of the acid-modified sawdust for decolourization. The temperature, pH, conductivity, total dissolved solids and colour of the tannery effluents were determined before and after the adsorption process. The physical properties of the effluent viz temperature, pH, and conductivity were analyzed using a mercury thermometer, digital pH meter (Model KL-03I) and a conductivity meter respectively. Total Dissolved Solid was tested as per APHA standards. Decolourization of the wastewater was carried out using the batch method as described elsewhere [23]. The adsorption studies were carried out at variable contact time (seconds), adsorbent dosage (g) and agitation speeds (revolutions per minute, rpm).

2.4 Adsorption experiments

(1) Effect of Variable Adsorbent Dosage

Wastewater sample (100 cm3 each) was accurately measured and transferred into 3 containers (500 cm3 beakers) labelled A, B and C. Adsorbent dosage of 5 g, 10 g and 15 g at a constant agitation speed of 120 rpm and contact time of 300 seconds were added to A, B and C respectively. The mixtures were filtered and the filtrate was analyzed for the extent of decolourization.

(2) Effect of Agitation Speed/Stirring Rate

To a similar set of beakers labelled A, B, and C, having 100 cm3 each of waste water maintained for 300 seconds, containing 10 g of adsorbent each, the stirring rate was varied to 100 rpm, 120 rpm and 140 rpm in A, B and C respectively. The mixture was filtered and the filtrates were analyzed for the extent of decolourization.

(3) Effect of Contact Time

Wastewater samples (100 cm3) placed in beakers labelled A, B and C, having 100 cm3 each of waste water maintained for 300 seconds, containing 10 g of adsorbent each, the stirring rate was varied to 100 rpm, 120 rpm and 140 rpm in A, B and C respectively. The mixture was filtered and the filtrates were analyzed for the extent of decolourization.

3. Results

3.1 Result of physicochemical parameters

The result of physicochemical parameters of the tannery waste water before and (after) decolourization is presented in Table 1.
3.2 Results of predetermined λ_{max}/absorbance

Table 2 presents the absorbance of samples at predetermined wavelength (630 nm).

<table>
<thead>
<tr>
<th>Sample</th>
<th>λ_{max} (nm)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>490 (204)</td>
<td>2.232 (0.929)</td>
</tr>
<tr>
<td>B</td>
<td>410 (186)</td>
<td>2.146 (0.973)</td>
</tr>
<tr>
<td>C</td>
<td>490 (201)</td>
<td>0.094 (0.038)</td>
</tr>
</tbody>
</table>

Values before and (after) decolourization.

3.3 Result variable of adsorbent dosage

Table 3 shows the absorbance (at 490 nm) of the various wastewater samples after treatment.

<table>
<thead>
<tr>
<th>Adsorbent Dosage (g)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>1.873</td>
</tr>
<tr>
<td>10</td>
<td>1.635</td>
</tr>
<tr>
<td>15</td>
<td>1.216</td>
</tr>
</tbody>
</table>

ND= Not Detected

3.4 Result of variable agitation

Table 4 presents the absorbance of the wastewater samples after treatment, at variable agitation speed.

<table>
<thead>
<tr>
<th>Agitation Speed (rpm)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>100</td>
<td>1.220</td>
</tr>
<tr>
<td>120</td>
<td>1.209</td>
</tr>
<tr>
<td>140</td>
<td>1.188</td>
</tr>
</tbody>
</table>

ND= Not Detected

3.5 Result of variable contact time

The absorbance (at 490 nm) of the various wastewater samples after treatment, by varying the contact time at an agitation speed of 120 rpm and constant adsorbent dosage of 10 g is presented in Table 5.

<table>
<thead>
<tr>
<th>Contact Time (min)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>1.162</td>
</tr>
<tr>
<td>20</td>
<td>1.137</td>
</tr>
<tr>
<td>30</td>
<td>1.121</td>
</tr>
</tbody>
</table>

ND=Not Detected

4. Discussion

The physicochemical characteristics of the tannery wastewater were reported in Table 1. The average recorded temperatures (K) before and after are 302.63 and 297.4 K respectively. This informs that clarity obtained lead to decrease in suspended solids which makes the samples colder (lower temperature). The temperature obtained for sample A, B and C in this study is higher compared to 296.9 K reported by \cite{29}. The slight difference in temperature showed gradual appreciable pattern of decrease. In this study, average pH of 6.1 and 6.83 were recorded for the samples before and after decolourization. However, \cite{30} reported a pH value of 10.5, which is greater than the values recorded for the studied samples. The average pH value of 6.8 close to 7.8 recorded for sample C was also reported by \cite{31}. This shows that the degree of acidity or alkalinity of tannery wastewater can vary greatly depending on the concentration of chemicals. The slight decrease in acidity in the pH values shows that the effluents became less alkaline (slightly acidic) after use. This confirms that they can be used for shaving hairs from the skins of animals. The pH values recorded for the wastewater in this study was within the standard discharge limit of 6.5 - 9.5
as shown in the standard permissible limit (SPL) by the World Health Organization (WHO).

The electrical conductivity (EC) recorded in μS/cm for the samples are 15.62, 15.98 and 821.83 accordingly while 25.89, 32.76 and 850.01 for treated samples respectively. The values for electrical conductivity (EC) in samples A (25.89) and B (32.76) are lower compared to 850.01 recorded in sample C. However, the three samples recorded an EC values that is within the standard of 1200 μS/cm stipulated for discharge of wastewater into the environment. These values are low compared to 1348 μS/cm recorded by [1]. The variation in the total electrical conductivity may be dependent on the different kinds of chemicals used in the different stages of the tannery processes. Amount of total dissolved solids (TDS) recorded for the samples A, B and C are in the order 53470, 23230 and 28650 mg/L respectively. Reports by [2] and [3] presented lower TDS values of 14020 mg/L and 1318 mg/L respectively. Compared to the values of 2100 mg/L reported as standard discharge limit for waste water, values in this finding are much higher, which means that the tannery wastewater samples were quite polluted; samples A B and C are brownish in colour but became cloudy after decolourization.

Table 2 presents the results of the predetermined wavelength (630 nm) of maximum absorption (Lambda max) and their corresponding absorbance values. The extent of colour removal was assessed based on the difference in absorbance of the sampled wastewater. Distilled deionized water was used as blank while the different wastewater samples were analysed at 630 nm. The observed Lambda max (λmax) for the respective samples may be due to the various absorbing molecules contained in the sample solution. Samples A and C recorded absorbance of 490 nm each, before adsorption and 204 and 201 nm respectively after adsorption. By this similarity in absorbance, samples A and C likely contain similar absorbing molecules (though at different concentration) than sample B whose absorbance is 410 nm. The best condition for the colour removal of the wastewater samples is thus established from the initial absorbance obtained for the untreated tannery wastewater. This means that reduction in the absorbance obtained for the untreated wastewater samples was regarded as an indication of colour removal capability of the prepared adsorbent.

Table 3 displays the result of variable absorbance recorded for samples, A, B, and C, at stirring speed of 120 rpm for a period of 5 min while the adsorbent dosages varied at 5, 10 and 15 g respectively. The colour removal efficacy of the prepared adsorbent was determined at different dosage. It was observed that upon subjecting the samples to stated conditions and 5g of the adsorbent, the absorbance values obtained were 1.873, 1.913 and 0.04. When the adsorbent load was increased to 10 g, there was a decrease in the absorbance values for sample A and B to 1.635 and 1.649 while there was no absorbance detected for sample C. Further increase in the adsorbent loading resulted to a decrease in absorbance values while there was no absorbance for sample C. This shows that adsorbent dosage is a significant factor in the removal of colour from tannery wastewater.

A difference of 0.238 in absorbance is noticed when the dosage is increased from 5 g to 10 g and 0.419 from 10 g to 15 g for sample A respectively. For sample B, the difference in absorbance values are 0.264 and 0.542 respectively, when the load was increased from 5 g to 10 g and from 10 to 15 g.

The efficiency of the colour removal increased from 16.08 % to 45.52 % for sample A; from 10.86 % to 48.42 % while it increased from 57.45 % to 100 % for sample C with increasing adsorbent dosage from 5 to 15 g for all samples. According to Sharma and Uma [33], adsorption increased from 86.75 to 99.83 % with increasing adsorbent dose from 0.40 to 0.60 g. Accordingly, [34] also reported increase in removal efficiency for MB dye with increasing amount of adsorbent.

The effect of stirring speed on colour removal of the samples, A, B, and C were presented in Table 4. Different agitation rate of 100, 120 and 140 rpm at an adsorbent load of 10 g for 300 seconds. 10 grams of adsorbent was used because it gave the best colour removal capability from the previous experiment. At the speed of 100 rpm, the absorbance values of 1.220 and 1.121 were recorded for samples A and B while sample C does not show any absorbance. When the stirring speed was increased to 120 rpm there was a slight decrease in the absorbance of the samples. A further increase in the stirring speed also resulted in decrease in the values of the absorbance. Significant variation in absorbance values is attributed to shoot up of the stirring rate from 100 rpm to 120 rpm and 120 rpm to 140 rpm.

Although the effects are not well pronounced as revealed by the present investigation, probably due to saturation and exhaustion of the binding sites on the adsorbents [32-33].

Furthermore, the effect of contact time on colour adsorption by the prepared adsorbent was investigated. Table 5 shows the absorbance of samples A, B, and C, with adsorbent load of 10 g at stirring speed of 120 rpm for a period of 10 min, 20 min and 30 min respectively. For sample A, the absorbance dropped from 1.162 to 1.137 and further 1.121 at contact time of 10 min and stirring.
speed of 120 rpm.

Sample B recorded a drop in value of absorbance from 1.083 to 1.049 and finally to 1.037 from 30 to 20 to 10 minutes respectively. Reduction in values of the absorbance is an indication of colour removal by the prepared adsorbent. The efficiency of removal is assessed by the level of reduction in the absorbance. It is obvious from Table 5 that time is an important parameter for the adsorption of colour on activated sawdust. The activated sawdust is also very effective in the removal of colour from sample C.

5. Conclusion

Based on the research findings, it can be seen that adsorbent dosage, stirring speed as well as contact time are all important factors in colour removal from wastewater. The adsorbing molecules of the constituent of coloured solution may also affect the efficiency of colour removal.

Adsorption of colour was influenced by various parameters such as adsorbent dosage, agitation speed and contact time. Adsorption increased with increasing the quantity of adsorbent over extended period of time and it was also observed that efficiency of colour removal was concentration dependent. The present investigation proved that adsorbent made from sawdust can be employed for the decolourization of tannery wastewater.

References