Thermocline Model for Estimating Argo Sea Surface Temperature

Zhang ChunLing(College of Marine Science, Shanghai Ocean University, Shanghai 201306, China)
Zhang Meng-Li(College of Marine Science, Shanghai Ocean University, Shanghai 201306, China)
Wang Zhen-Feng(Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China)
Hu Song(College of Marine Science, Shanghai Ocean University, Shanghai 201306, China)
Wang Dan-Yang(College of Marine Science, Shanghai Ocean University, Shanghai 201306, China)
Yang Sheng-Long(Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization,Ministry of Agriculture,Shanghai 200090, China)

Abstract


Argo has become an important constituent of the global ocean observation system. However, due to the lack of sea surface measurements from most Argo profiles, the application of Argo data is still limited. In this study, a thermocline model was constructed based on three key thermocline parameters, i.e, thermocline upper depth, the thermocline bottom depth, and thermocline temperature gradient. Following the model, we estimated the sea surface temperature of Argo profiles by providing the relationship between sea surface and subsurface temperature. We tested the effectiveness of our proposed model using statistical analysis and by comparing the sea surface temperature with the results obtained from traditional methods and in situ observations in the Pacific Ocean. The root mean square errors of results obtained from thermocline model were found to be significantly reduced compared to the extrapolation results and satellite retrieved temperature results. The correlation coefficient between the estimation result and in situ observation was 0.967. Argo surface temperature, estimated by the thermocline model, has been theoretically proved to be reliable. Thus, our model generates theoretically feasible data present the mesoscale phenomenon in more detail. Overall, this study compensates for the lack surface observation of Argo, and provides a new tool to establish complete Argo data sets.


Keywords


Argo,Sea surface temperature,Thermocline model,The Pacific Ocean

Full Text:

PDF

References


Jordi, A.; Wang, D.P. Sbpom: a parallel implementation of prince ton ocean model. Environ. Modell. Softw. 2012, 38, 59–61.

Donlon, C., Casey, K., Robinson, I., Gentemann, C., Reynolds, R., Barton, I., Arino, O., Stark, J., Rayner, N., LeBorgne, P., Poulter, D., Vazquez-Cuervo, J., Armstrong, E., Beggs, H., Llewellyn-Jones, D., Minnett, P., Merchant, C., and Evans, R. The GODAE high-resolution sea surface temperature pilot project. Oceanography, 2009, 22: 34-45.

Guinehut, S. P., Traon Le, P. Y., Larnicol, G., and Philipps, S. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields - A first approach based on simulated observations. Journal of Marine Systems, 2004, 46: 85-98.

Souza, J. M., Boyer Montegut, A. C., Cabanes, C., and Klein, P. Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data. Geophysical Research Letters, 2011, 38: L21602.

Hobbs, W. R., and Willis, J. K. Mid latitude North Atlantic heat transport: A time series based on satellite and drifter data. Journal of Geophysical Research, 2012, 117: C01008.

Larson, N. L., Janzen, C. D., and Murphy, D. J. STS: An instrument for extending ARGO temperature and salinity measurements through the sea surface. Florida: Poster Presentation Ocean Sciences Meeting, Volume 2008, 2008: 2-7.

Xu, J. P., and Liu, Z. H. The experiment of China Argo ocean observing array. Beijing: China Meteorological Press, 2007: 4-5.

Chang-Xiang, Y., Jiang, Z., and Ji-Ping, X. An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean. Atmospheric and Oceanic Science Letters, 2010, 3: 81-86.

Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M. World ocean atlas 2013. Salinity. Ed.; S Levitus, Volume 2, 2013;

Martin, M. J., Hines, A., and Bell, M. J. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Quarterly Journal of the Royal Meteorological Society, 2007, 133: 981-995.

Hosoda, S., Ohira, T., and Nakamura, T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Report. Research Developments, 2008, 8: 47-59.

Gaillard, F. ISAS-Tool version 5.3: Method and configuration. Laboratoere de Physique de Oceans, 2010. UMR6523: 1-12.

Brion, E., and Gaillard, F. ISAS-Tool version 6: User's manual. Report LPO 01-12, 2012: 1-45.

Roemmich, D., and Gilson, J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 2009, 82: 81-100.

Wang, H. Z., Wang, G. H., Zhang, R., A., Y. Z., and Jin, B. G. User’s Manual of User’s Manual of Argo Gridded Salinity Product (G-Argo). Hangzhou: Second Institute of Oceanography, 2010: 1-6.

Li, H., Xu, F., Zhou, W., et al Development of a global gridded Argo data set with Barnes successive corrections. Journal of Geophysical Research: Oceans, 2017, 122: 866-889.

Shi, M. Ch., Gao, G. P., and Bao, X. W. Method of ocean survey. Qingdao: Qingdao Ocean University Press, 2000: 51-52.

Lu, S. L., Xu, J. P., and Liu, Z. H. Analysis of the differences between microwave remote sensing SST and Argo NST in the Southern Hemisphere. Marine Forecasts, 2014, 31: 1-8.

Liu, Z., Xu, J., Zhu, B., et al Calibration of Argo profiling float salinity data using historical hydrographic data[A]. Hangzhou. Proceedings of “China Argo Science Workshop” Conference, 2006: 14-17.

Chu, P. C., Fan, C. W., and Liu, W. T. Determination of vertical thermal structure from sea surface temperature. Journal of Atmospheric and Oceanic Technology Meteorological Society, 2000, 17: 971-979.

Chu, P. C., and Fan, C. W. Maximum angle method for determining mixed layer depth from sea glider data. Journal of Oceanography, 2011, 67: 219-230.

Zhang, C. L., Xu, J. P., and Bao, X. Gradient dependent correlation scale method based on Argo. Journal of PLA University of Science and Technology (Natural Science Edition), 2015, 16: 476-483.

Akima, H. A new method for interpolation and smooth curve fitting based on local procedures. Journal of the ACM, 1970, 17: 589-602.

Juza, M., Penduff, T., Brankart, J. -M., and Barnier, B. Estimating the distortion of mixed layer property distributions induced by the Argo sampling. Journal of Operational Oceanography, 2012, 5: 45-58.

Zhang, C. L., Xu, J. P., Bao, X., et al An effective method for improving the accuracy of Argo objective analysis. Acta Oceanologica Sinica, 2013, 32: 66-77.

Zhang, C. L., Wang, Z. F., and Liu, Y. An argo-based experiment providing near-real-time subsurface oceanic environmental information for fishery data. Fisheries Oceanography, 2021, 30: 85-98.

Lu, J., Qiao, F. L., Wei, Z. X., Teng, Y., and Xia, C. Sh. Study on distribution of mixed layer depth in the world ocean in summer. Advances in Marine Science, 2008, 26: 145-155.

Wang, Y. L., Huang, B., Zhang, R., Teng, J., Dong, Z. J., and Wang, H. Z. Distribution characteristics of world oceanic thermocline based on Argo data. Advances in Marine Science, 2008, 26: 428-435.




DOI: http://dx.doi.org/10.36956/sms.v4i1.474

Refbacks

  • There are currently no refbacks.


Copyright © 2022 Zhang ChunLing, Zhang Meng-Li, Wang Zhen-Feng, Hu Song, Wang Dan-Yang, Yang Sheng-Long

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
: +65 65881289 : contact@nassg.org